REGIOSPECIFIC ADDITION OF TCNE TO 2-exo-METHYL-endo-TRICYCLO [3.2.1.0^{2,4}] OCT-6-ENE

J.M. Coxon*, M. de Bruijn and C.K. Lau

Department of Chemistry, University of Canterbury, Christchurch, New Zealand
(Received in UK 5 December 1974; accepted for publication 23 December 1974)

We report a novel reaction involving regiospecific corner attack by TCNE at C(4) of 2-exo-methyl-endo-tricyclo $[3.2.1.0^2, ^4]$ oct-6-ene 1. Hydrocarbon 1,

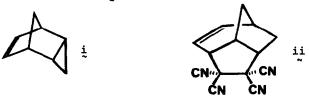
prepared by reaction of cyclopentadiene with 1-methylcyclopropene, was reported by Magid et al¹ and the stereochemistry assigned from the known preference² for endo-adduct formation. For the present study it was necessary to establish the stereochemistry of the adduct beyond doubt. The ¹³C FT N.m.r. spectra of endo-and exo-tricyclo [3.2.1.0^{2,4}]oct-6-enes 2 and 3 exhibit an extraordinarily large y-shift³; for the exo-isomer 3,C(8) is shielded (-11.1 ppm) and the vinyl carbons deshielded(5.9 ppm) and for the endo-isomer 2, C(8) is deshielded (15.2 ppm) and the vinyl carbons shielded (-4.8 ppm) with respect to the corresponding carbons of norbornene 4. An effect similar to endo-isomer 2 is observed for adduct 1; C(8) is deshielded (16.4 ppm) and the vinyl carbons shielded ((-5.4 ppm), (-4.4 ppm)) relative to the appropriate carbons of 5-exo-methylnorbornene (Table I). These observations unambiguously establish the stereochemistry of adduct 1 as endo.

Reaction of hydrocarbon $\frac{1}{2}$ with TCNE in methylene chloride at room temperature for one week gave in high yield (> 80%) a compound (m.p. $170-2^{\circ}$) shown from elemental analysis and the mass spectrum to be a 1 : 1 adduct.

338 No. 5

		Tal	ble l	. ¹³ c N	l.m.r.	Data i	n CDC1 ₃			
No.	Compound	a	a'	ь	b'	c	đ	đ'	e	£
	Å									
$\frac{2^3}{\mathbf{d}}$	1)	42.3 0.5		12.	. 3	63.7	130.	4	17.1	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-12.	.3	15.2	-4.	8		
	Ye									
	Λ γe									
33/	<i>t</i> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	41.4	4	21.	9	37.4	141.	1	19.2	
d	3-4Δδ (ppm)	-0.		-2.		-11.1			27.2	
_	D ~ ~									
	₄C									
	\bigwedge									
43/	<u> </u>	41.8	В	24.	6	48.5	135.	2		
ď	" Ъ									
d	Ďa, f									
54	7 P-CH ₃ 4	B.7	42.7	(33.0)	35.0	45.0	(136.2)	(137.2)		21.7
d' '	b 5-4Δδ(ppm)	6.9	0.9	8.4	10.4	-3.5	(1.0)			
	_									
	Λa τ									
, 5 d	P CH₃	3.2	44.1	10.7	10 5	61.4	(130.8)	(122.0)	24.2	20.0
t d'	1-5Δδ (ppm) -									20.8 -0.9
	$\sum_{1-2\Delta\delta} (ppm)$		1.8	7.4			(0.4)			

The 13 C chemical shifts 5 (17.9(s), 22.3(q), 26.0(d), 26.6(t), 27.9(t), 30.0(d), 42.6(d), 46.0(s), 48.8(d), 52.0(s), 55.2(d), 110.3(s), 111.0(s), 111.9(s), 112.1(s)) are inconsistent with those expected for a $\left[\pi^2 + \pi^2\right]$ cycloadduct. The product was identified as 4,4,5,5-tetracyano-8-methyltetracyclo-[4.2.2.0^{2,8}.0^{3.10}] decame 6 as follows. In the P.m.r. spectrum⁶ (Table II) C(3)H was coupled to C(2)H and C(10)H and exhibited long range coupling with C(6)H and a C(9)H. The C(2)H was coupled with C(1)H which appeared as a multiplet and sharpened to the upfield doublet of an AB quartet when C(9)H2 The C(10) H multiplet sharpened on irradiation of C(9) H₂. was irradiated. The C(7)H2 appeared as an AB quartet with the downfield proton further coupled to C(6) - the downfield proton of the C(6)H, C(10)H multiplet.


Table II N.m.r. data for adduct 6

Functional group	Position of signal(s) & (p.p.m.)	Apparent coup1 (Hz)	ing constants
C (3) H	3.36	^J 3,10	6.5
		J _{3,2}	3.6
		^J 3,6	<0.5
С(10)Н, С(6)Н	2.95 (W ^h 20Hz)		
C (7) <u>exo-</u> H	2.29	J7exo,7endo	15.8
		^J 7 <u>exo</u> ,6	8.2
C (7) endo-H	2.09	J _{7endo} ,7exo	15.8
		J _{7endo} ,6	∿1.0
		J _{7endo} ,10	<1.0
C(9)H ₂	2.06 $(W_{\overline{2}}^{h} 5Hz)$		
C(2)H	1.69	J _{2,1}	6.5
		^J 2,3	3.6
С(1)Н	1.52	J _{1,2}	6.5
C(8)CH3	1.07		

Reaction of TCNE with hydrocarbon 1 is regiospecific involving cleavage of the strained C(2),C(4) bond by corner attack at C(4)⁷. The reaction proceeds probably <u>via</u> the ionic species 7 which has a sufficient lifetime for conformational inversion to the boat conformation 8 to occur allowing overlap of the tertiary carbonium ion with the π -bond (Scheme I). The C(2)-methyl substituent has a marked influence 8 on the course of the reaction since the intermediate tertiary ion 7 is sufficiently stable to permit the conformational change necessary to facilitate C(7),C(2) bond formation.

References

- R.M. Magid, T.C. Clarke and C.D. Duncan, J.Org. Chem., 36, 1320 (1971)
- R.B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry"
 Academic Press: New York 1970 p.145 and references therein.
- 3. K. Tori, M. Ueyama, T. Tsuji, H. Matsumura and H. Tanida, <u>Tetrahedron Lett</u>. 327 (1974).
- 4. J.B. Grutzner, M. Jautelat, J.B. Dence, R.A. Smith and J.D. Roberts, J.Amer.Chem.Soc., 92, 7107 (1970).
- 5. ¹³C FT N.m.r. spectra recorded on a Varian CFT20 spectrometer in the CDCl₃-locked mode at 20 MHz. Sample concentrations were about 1M in CDCl₃ containing TMS as an internal reference.
- 6. Recorded on a Bruker HF X90 spectrometer in CDCl₂.
- 7. No product resulting from electrophilic attack at the alkene was observed.
- 8. This effect can be seen from a comparison with the reaction of endo-tricyclo $\left[3.2.1.0^{2,4}\right]$ oct-6-ene(i) with TCNE to give 5.5.6.6-tetracyanotricyclo $\left[5.2.1.0^{4,8}\right]$ dec-2-ene(ii).

This work is being written up for publication by Professor M.A. Battiste at the University of Florida.